BUSINESS ANALYTICS using Python

50+ hours Case Study and Project- driven Methodology Blended Learning Methodology

			1
Ŀ	_		
13			
Ŀ	_		

DETAILED CURRICULUM

MODULE 1 - FEATURE ENGINEERING

 Identifying Data type Exploratory data analysis - Data Summarisation and visualisation Missing value treatment for Categorical Variables Missing value treatment for Continuous Variables Outliers treatment for Countinuous Variables Outliers treatment for Countinuous Variables Outliers treatment for Countinuous Variables Balancing of data Covariaties Creation (Enrichment) Dimensions Reductions Dummy Coding for Categorical Variables Scaling for continuous Variables Discretisation or Weight of Evidence Data Partitioning 			
	STEPS OF DATA Cleaning & Processing	 Identifying Data type Exploratory data analysis - Data Summarisation and visualisation Missing value treatment for Categorical Variables Missing value treatment for Continuous Variables Outliers treatment for Categorical Variables Outliers treatment for Countinuous Variables Outliers treatment for Countinuous Variables Balancing of data Covariaties Creation (Enrichment) Dimensions Reductions Dummy Coding for Categorical Variables Scaling for continuous Variables Discretisation or Weight of Evidence Data Partitioning 	

MODULE 2 - MODEL BUILDING

STEPWISE REGRESSION	 Removing problems of Multicollinearity, Selecting Important Variables Correcting Problems of autocorrelation Checking problems of Non-Linearity Then correcting the Problems of Heteroskedasticity
------------------------	--

_	_
_	

DETAILED CURRICULUM

TYPES OF REGRESSION	 Multiple Regression Dummy Independent Variable - Dummy Regression Dummy Dependant Variable - Logistic Regression Penalised Regression - Ridge & Lasso Regression Forward Selection, Forward stagewise and least angle Regression Bayesian regression with Spike & Slab Selection Support Vector Regression Principal Component Regression 	
LOGISTIC REGRESSION	 General Linear Modelling in Excel using 4 main link functions Normal, Poisson, Binomial, Gamma. Multinomial Logit, Ordered Logit Model 	
DECISION TREE	 Classification and Decision Tree Classification & Regression Tree CHAID Boosting, Bagging & Random Forest 	
SUPPORT Vector Machine	 Primal & Dual Formulation Linear SVM, Non Linear SVM using Slack Variables Kernel Trick and Radial Basis Function 	
LINEAR DISCRIMINANT ANALYSIS	 Maximum Likelihood Fisher's Discriminant Bayesian Discrimination 	
K -NEAREST NEIGHBOUR	1.K-Nearest neighbour2.K-means protype	

DETAILED CURRICULUM

NAIVE BAYES CLASSIFIER	Bayes TheoremNaïve Bayes Classifier		
CLUSTERING	 Bottom up Clustering a.k.a K means clustering Bottom up Clustering a.k.a Hierarchical clustering Top down Clustering a.k.a Minimal Spanning Tree Clustering using Expectation Maximization Mixed Variables Clustering - K means Prototype 		

MODULE 3 - MODELLING VALIDATION

VALIDATION Metrics	 Gini/AR AUROC/ CAP Unconditional Entropy Conditional Entropy Kullback-Leibler Divergence Kolmogorov-Smirnov (KS) Information Value 	
	ΠΟΙΓΟΤΟ	

MODULE 4 - PROJECTS

	Application to Credit data
	- Application to UD data
PROJECTS	Application to HR data
	 Application to Fraud detection
	 Application to Marketing data

BACKGROUND

OBJECTIVE

ATTENDEES

PEDADOGY

BACKGROUND

The amount of data that is being generated on a daily basis has increased multiple times, the technological advancement in terms of storing this data has improved considerably. Therefore, in turn the ability to analyse the data and generate insights for data driven decision making becomes primarily importance However the availability of manpower with data science and machine learning skills is limited. The objective of the course is to introduce the concepts of data science and machine learning to the participants using python.

OBJECTIVE

Develop predictive models using various statistical and machine learning techniques, Interpret and evaluate various models and its generalization, Hands on experience on the usage of open notebooks in Python like Jupiter.

PEDADOGY

Professionals working in analytics field or students interested to make a career in analytics

WHO CAN ATTEND

Beginner candidates from various quantitative backgrounds, like Engineering, Finance, Maths, Business Management who are looking for Business Analytics training to start their career in the field of Analytics and Data Science.

DEMO MODELS

DURING THE PROGRAM YOU WILL LEARN TO CREATE EXCEL MODELS LIKE SHOWN BELOW

FREQUENTLY ASKED QUESTIONS

Karan Aggarwal is one of India's leading trainers in Financial Modelling, Risk Modelling, Data Analytics and academic programs like Financial Risk Manager (FRM) & Actuarial Science. He has spearheaded several solution accelerators and spreadsheet-based prototypes in Risk and Analytics space. Karan has also authored a number of books on Advanced Excel, Statistical Modelling, Risk Modelling & Machine Learning. He is widely regarded for his problem-solving, thought leadership and intrapreneurship skills. His analytical mindset, solid fundamentals & the thirst to keep learning set him apart as a true authority in this field. Karan has also been awarded the Young Indian Entrepreneur Award by the Confederation Of Indian Industries in the year 2017.

OUR TRAINEES WORK IN

OUR SERVICES 4 Risk Managem Finance -R ×∎ TRAINING SOLUTIONING CONSULTING

