FINANCIAL ENGINEERING using Excel

30+ hours Case Study and Project- driven Methodology Blended Learning Methodology

1:	_		
13	_	• -	Ξ
	_	-	-
L			

MODULE 1 - PORTFOLIO THEORY

UTILITY Theory	 Stopping time of a Gamble Absolute and Relative Risk Aversion Insurance premium
STOCHASTIC Dominance	 First order Stochastic Dominance Second order Stochastic Dominance Risk-averse and Risk-seeking investor
MEASURES OF Investment Risk	 Downside Semi Variance Value at Risk Risk measures and utility function
STOCHASTIC Model of Investment Return	 Fixed Rate Model Varying Rate Model Lognormal Model
PORTFOLIO THEORY	 Correlation between Asset returns Optimal portfolio Benefits of diversification

		1	_	_
				Г
	-		=	I
	=		=	I
Р	-		=	I
				L
			-	ļ

MODEL OF ASSET RETURNS	 Single Index Model Orthogonality Zero-beta portfolio 	
ASSET Pricing Model	 Market portfolio Efficient Frontier under Capital Asset Pricing Model Security Market Line 	

MODULE 2 - STOCHASTIC CALCULUS

BROWNIAN Motion and Martingale	 Brownian Motion squared dB(t) squared 	
STOCHASTIC Calculus And Ito Process	 Ito integrals Ito lemmas Constant Elasticity of Variance models 	
STOCHASTIC Models of Security Prices	 Normality of returns Parameters of Geometric Brownian Motion Modified Geometric Brownian Motion 	

	11.
	н.
	н.
	μ.
-	

MODULE 3 - DERIVATIVES

DERIVATIVE SECURITIES	 Bounds of Options Replicating payoff Put-Call Parity
OPTION GREEKS	 Delta of Forward contract Theta of Forward contract Approximate Derivative price
THE BINOMIAL MODEL	 8-step Binomial tree Binomial branch Q vs P Binomial model with dividends
BLACK Scholes Option Pricing	 Black Scholes calculator Time value of Call option Portfolio of options
5 STEP METHOD IN DISCRETE TIME	 Self financing Equivalent probability measures Cameron-Martin-Girsanov

—	
—	

5 STEP Method Continuous Time	 Single index model Orthogonality Zero-beta portfolio
MODULE 4 - IN	TEREST RATE & RISK ANALYSIS
TERM STRUCTURE OF INTEREST RATES	 Vasicek yield curves Arbitrage free Vasicek bond price Vasicek vs Cox Ingersoll-Ross
CREDIT RISK	 Structural model 2 state model Jarrow Landow Turnbull model
RUIN Theory	 Motor claims and ruin theory Fire insurance Ruin theory simulation
RUN OFF Triangles	 Run off triangles with inflation Average cost per claim run off Triangles Bornhutter- Ferguson method

BACKGROUND

OBJECTIVE

PEDADOGY

BACKGROUND

Financial Engineering is the buzz word of the modern times involving design of financial products and bringing in more innovation into the Financial World. Derivatives play a key role in Financial Engineering, so is the importance of Mathematics and Statistics. The objective of this course is to introduce you to the complex mathematics behind Financial Engineering using simple Excel.

OBJECTIVE

Understanding of different mathematical concepts needed for Financial Engineering in Excel , Understanding different numerical methods based solutions using Excel , Usage of Computational Finance Concepts in Financial Derivatives Pricing and Trading , Understanding of Portfolio theories and asset allocations.

PEDADOGY

An intuitive non-quantitative approach will be employed throughout so that participants develop a feel for risk/reward tradeoffs without relying on complex mathematical formulas. Having said that , participants are encouraged to have laptops with Excel for a chance to manipulate simple but illustrative calculations.

WHO CAN ATTEND

An MBA in Finance or any Finance Professional pursuing CFA/FRM/Actuaries who is aspiring to take up challenging opportunities in Financial Engineering or looking to enter into Full fledged Financial Engineering programs of reputed universities across the world.

DEMO MODELS

DURING THE PROGRAM YOU WILL LEARN TO CREATE EXCEL MODELS LIKE SHOWN BELOW

FREQUENTLY ASKED QUESTIONS

Ĩ×=

PREREQUISITE

Knowledge of Basic Excel , Basic Statistics , Stochastic Calculus and Financial Products is must

FEES	161
Rs.8000	

CERTIFICATE

Silver Certificate on successful completion of projects . Gold Certification on passing a 2 hours MCQ based exam.

DURATION

30+ hours

ABOUT THE TRAINER

Karan Aggarwal is one of India's leading trainers in Financial Modelling, Risk Modelling, Data Analytics and academic programs like Financial Risk Manager (FRM) & Actuarial Science. He has spearheaded several solution accelerators and spreadsheet-based prototypes in Risk and Analytics space. Karan has also authored a number of books on Advanced Excel, Statistical Modelling, Risk Modelling & Machine Learning. He is widely regarded for his problem-solving, thought leadership and intrapreneurship skills. His analytical mindset, solid fundamentals & the thirst to keep learning set him apart as a true authority in this field. Karan has also been awarded the Young Indian Entrepreneur Award by the Confederation Of Indian Industries in the year 2017.

OUR TRAINEES WORK IN

OUR SERVICES 4 Risk Managem Finance -R ×∎ TRAINING SOLUTIONING CONSULTING

